The index of some mixed order Dirac type operators and generalised Dirichlet–Neumann tensor fields

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Dirk Pauly - , Universität Duisburg-Essen (Autor:in)
  • Marcus Waurick - , Technische Universität Bergakademie Freiberg (Autor:in)

Abstract

We revisit a construction principle of Fredholm operators using Hilbert complexes of densely defined, closed linear operators and apply this to particular choices of differential operators. The resulting index is then computed using an explicit description of the cohomology groups of generalised (‘harmonic’) Dirichlet and Neumann tensor fields. The main results of this contribution are the computation of the indices of Dirac type operators associated to the elasticity complex and the newly found biharmonic complex, relevant for the biharmonic equation, elasticity, and for the theory of general relativity. The differential operators are of mixed order and cannot be seen as leading order type with relatively compact perturbation. As a by-product we present a comprehensive description of the underlying generalised Dirichlet–Neumann vector and tensor fields defining the respective cohomology groups, including an explicit construction of bases in terms of topological invariants, which are of both analytical and numerical interest. Though being defined by certain projection mechanisms, we shall present a way of computing these basis functions by solving certain PDEs given in variational form. For all of this we rephrase core arguments in the work of Rainer Picard [42] applied to the de Rham complex and use them as a blueprint for the more involved cases presented here. In passing, we also provide new vector-analytical estimates of generalised Poincaré–Friedrichs type useful for elasticity or the theory of general relativity.

Details

OriginalspracheEnglisch
Seiten (von - bis)1739-1819
Seitenumfang81
FachzeitschriftMathematische Zeitschrift
Jahrgang301
Ausgabenummer2
Frühes Online-DatumJan. 2022
PublikationsstatusVeröffentlicht - Juni 2022
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0003-4155-7297/work/145224257
WOS 000750383000001

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • biharmonic complex, Cohomology, Dirac operator, Elasticity complex, Fredholm index, Harmonic Dirichlet and Neumann tensors, Hilbert complex, Picard’s extended Maxwell system