The impact of stimulus valence and emotion regulation on sustained brain activation: Task-rest switching in emotion

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jan Peter Lamke - , Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin (Autor:in)
  • Judith K. Daniels - , Charité – Universitätsmedizin Berlin, Otto-von-Guericke-Universität Magdeburg (Autor:in)
  • Denise Dörfel - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Michael Gaebler - , Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Max-Planck-Institut für Kognitions- und Neurowissenschaften (Autor:in)
  • Rasha Abdel Rahman - , Humboldt-Universität zu Berlin (Autor:in)
  • Falk Hummel - , Universität Bonn (Autor:in)
  • Susanne Erk - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Henrik Walter - , Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin (Autor:in)

Abstract

Task-rest interactions, defined as the modulation of brain activation during fixation periods depending on the preceding stimulation and experimental manipulation, have been described repeatedly for different cognitively demanding tasks in various regions across the brain. However, task-rest interactions in emotive paradigms have received considerably less attention. In this study, we therefore investigated task-rest interactions evoked by the induction and instructed regulation of negative emotion. Whole-brain, functional MRI data were acquired from 55 healthy participants. Two-level general linear model statistics were computed to test for differences between conditions, separately for stimulation and for fixation periods, as well as for interactions between stimulation and fixation (task-rest interactions). Results showed that the regulation of negative emotion led to reverse task-rest interactions (decreased activation during stimulation but increased activation during fixation) in the amygdala as well as in visual cortex regions and to concordant task-rest interactions (increased activation during both, stimulation and fixation) in the dorsolateral prefrontal cortex as well as in a number of brain regions at the intersection of the default mode and the dorsal attention networks. Thus, this first whole-brain investigation of task-rest interactions following the induction and regulation of negative emotion identified a widespread specific modulation of brain activation in regions subserving emotion generation and regulation as well as regions implicated in attention and default mode.

Details

OriginalspracheEnglisch
Aufsatznummere93098
FachzeitschriftPLoS ONE
Jahrgang9
Ausgabenummer3
PublikationsstatusVeröffentlicht - 28 März 2014
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 84899863734
PubMed 24682003
ORCID /0000-0002-5632-419X/work/142246576

Schlagworte

Schlagwörter

  • stimulus valence and emotion regulation, brain activation