The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Markus Alexander Grohme - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Siegfried Schloissnig - , Heidelberg Institute for Theoretical Studies (Autor:in)
  • Andrei Rozanski - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Martin Pippel - , Heidelberg Institute for Theoretical Studies (Autor:in)
  • George Robert Young - , The Francis Crick Institute (Autor:in)
  • Sylke Winkler - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Holger Brandl - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Ian Henry - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Andreas Dahl - , Center for Regenerative Therapies Dresden (CRTD) (Autor:in)
  • Sean Powell - , Heidelberg Institute for Theoretical Studies (Autor:in)
  • Michael Hiller - , Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme (Autor:in)
  • Eugene Myers - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Jochen Christian Rink - , Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)

Abstract

The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms.

Details

OriginalspracheEnglisch
Seiten (von - bis)56-61
Seitenumfang6
FachzeitschriftNature
Jahrgang554
Ausgabenummer7690
PublikationsstatusVeröffentlicht - 1 Feb. 2018
Peer-Review-StatusJa

Externe IDs

PubMed 29364871
ORCID /0000-0002-8134-5929/work/142257683

Schlagworte

ASJC Scopus Sachgebiete

Bibliotheksschlagworte