The Elasticity Complex: Compact Embeddings and Regular Decompositions
Publikation: Vorabdruck/Dokumentation/Bericht › Vorabdruck (Preprint)
Beitragende
Abstract
We investigate the Hilbert complex of elasticity involving spaces of symmetric tensor fields. For the involved tensor fields and operators we show closed ranges, Friedrichs/Poincare type estimates, Helmholtz type decompositions, regular decompositions, regular potentials, finite cohomology groups, and, most importantly, new compact embedding results. Our results hold for general bounded strong Lipschitz domains of arbitrary topology and rely on a general functional analysis framework (FA-ToolBox). Moreover, we present a simple technique to prove the compact embeddings based on regular decompositions/potentials and Rellich's section theorem, which can be easily adapted to any Hilbert complex.
Details
Originalsprache | Englisch |
---|---|
Publikationsstatus | Veröffentlicht - 29 Jan. 2020 |
Extern publiziert | Ja |
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.WorkingPaper
Externe IDs
ORCID | /0000-0003-4155-7297/work/145698485 |
---|
Schlagworte
Schlagwörter
- math.AP, cs.NA, math-ph, math.FA, math.MP, math.NA, 35G15, 58A14