The conjugacy diameters of non-abelian finite p-groups with cyclic maximal subgroups
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Let G be a group. A subset S of G is said to normally generate G if G is the normal closure of S in G. In this case, any element of G can be written as a product of conjugates of elements of S and their inverses. If g ∈ G and S is a normally generating subset of G, then we write ‖g‖S for the length of a shortest word in ConjG (S±1):= {h−1 sh|h ∈ G, s ∈ S or s−1 ∈ S } needed to express g. For any normally generating subset S of G, we write ‖G‖S = sup{‖g‖S | g ∈ G}. Moreover, we write ∆(G) for the supremum of all ‖G‖S, where S is a finite normally generating subset of G, and we call ∆(G) the conjugacy diameter of G. In this paper, we derive the conjugacy diameters of the semidihedral 2-groups, the generalized quaternion groups and the modular p-groups. This is a natural step after the determination of the conjugacy diameters of dihedral groups.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 10734-10755 |
Seitenumfang | 22 |
Fachzeitschrift | AIMS mathematics |
Jahrgang | 9 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 2024 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- conjugacy diameter, modular p-groups, normally generating subsets, quaternion group, semidihedral group, word norm