The Complexity of Network Satisfaction Problems for Symmetric Relation Algebras with a Flexible Atom
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Robin Hirsch posed in 1996 the Really Big Complexity Problem: classify the computational complexity of the network satisfaction problem for all finite relation algebras A. We provide a complete classification for the case that A is symmetric and has a exible atom; in this case, the problem is NP-complete or in P. The classification task can be reduced to the case where A is integral. If a finite integral relation algebra has a exible atom, then it has a normal representation B. We can then study the computational complexity of the network satisfaction problem of A using the universal-algebraic approach, via an analysis of the polymorphisms of B. We also use a Ramsey-type result of Nešetřil and Rödl and a complexity dichotomy result of Bulatov for conservative finite-domain constraint satisfaction problems.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1701-1744 |
Seitenumfang | 44 |
Fachzeitschrift | J. Artif. Intell. Res. |
Jahrgang | 75 |
Publikationsstatus | Veröffentlicht - 2022 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85148429779 |
---|---|
ORCID | /0000-0001-8228-3611/work/142241231 |