The adhesion capability of Staphylococcus aureus cells is heterogeneously distributed over the cell envelope

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Christian Spengler - , Universität des Saarlandes (Autor:in)
  • Erik Maikranz - , Universität des Saarlandes (Autor:in)
  • Bernhard Glatz - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Michael Andreas Klatt - , Universität des Saarlandes, Princeton University (Autor:in)
  • Hannah Heintz - , Universität des Saarlandes (Autor:in)
  • Markus Bischoff - , Universität des Saarlandes (Autor:in)
  • Ludger Santen - , Universität des Saarlandes (Autor:in)
  • Andreas Fery - , Professur für Physikalische Chemie polymerer Materialien (gB/IPF) (PC5), Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Karin Jacobs - , Universität des Saarlandes (Autor:in)

Abstract

Understanding and controlling microbial adhesion is a critical challenge in biomedical research, given the profound impact of bacterial infections on global health. Many facets of bacterial adhesion, including the distribution of adhesion forces across the cell wall, remain poorly understood. While a recent ‘patchy colloid’ model has shed light on adhesion in Gram-negative Escherichia coli cells, a corresponding model for Gram-positive cells has been elusive. In this study, we employ single cell force spectroscopy to investigate the adhesion force of Staphylococcus aureus. Normally, only one contact point of the entire bacterial surface is measured. However, by using a sine-shaped surface and recording force-distance curves along a path perpendicular to the rippled structures, we can characterize almost a hemisphere of one and the same bacterium. This unique approach allows us to study a greater number of contact points between the bacterium and the surface compared to conventional flat substrata. Distributed over the bacterial surface, we identify sites of higher and lower adhesion, which we call ‘patchy adhesion’, reminiscent of the patchy colloid model. The experimental results show that only some cells exhibit particularly strong adhesion at certain locations. To gain a better understanding of these locations, a geometric model of the bacterial cell surface was created. The experimental results were best reproduced by a model that features a few (5-6) particularly strong adhesion sites (diameter about 250 nm) that are widely distributed over the cell surface. Within the simulated patches, the number of molecules or their individual adhesive strength is increased. A more detailed comparison shows that simple geometric considerations for interacting molecules are not sufficient, but rather strong angle-dependent molecule-substratum interactions are required. We discuss the implications of our results for the development of new materials and the design and analysis of future studies.

Details

OriginalspracheEnglisch
Seiten (von - bis)484-494
Seitenumfang12
FachzeitschriftSoft matter
Jahrgang20
Ausgabenummer3
Frühes Online-Datum16 Okt. 2023
PublikationsstatusVeröffentlicht - 21 Jan. 2024
Peer-Review-StatusJa

Externe IDs

PubMed 37842771

Schlagworte