Template-based time series generation with loom

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Time series analysis and forecasting are important techniques for decision-making in many domains. They are typically evaluated on given sets of time series that have a constant size and specified characteristics. Synthetic datasets are relevant because they are flexible in both size and characteristics. In this demo, we present our prototype Loom, that generates datasets with respect to the user's configuration of categorical information and time series characteristics. The prototype allows for comparison of different analysis techniques.

Details

OriginalspracheEnglisch
TitelEDBT/ICDT 2016 Workshops
Redakteure/-innenThemis Palpanas, Kostas Stefanidis
Seitenumfang6
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa

Publikationsreihe

ReiheCEUR Workshop Proceedings
Band1558
ISSN1613-0073

Konferenz

TitelWorkshops of the EDBT/ICDT 2016 Joint Conference, EDBT/ICDT 2016
Dauer15 März 2016
StadtBordeaux
LandFrankreich

Externe IDs

ORCID /0000-0001-8107-2775/work/198592302

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

ASJC Scopus Sachgebiete

Schlagwörter

  • Data generation, Time series analysis