Template Decision Diagrams for Meta Control and Explainability

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Decision tree classifiers (DTs) provide an effective machine-learning model, well-known for its intuitive interpretability. However, they still miss opportunities well-established in software engineering that could further improve their explainability: separation of concerns, encapsulation, and reuse of behaviors. To enable these concepts, we introduce templates in decision diagrams (DDs) as an extension of multi-valued DDs. Templates allow to encapsulate and reuse common decision-making patterns. By a case study from the autonomous underwater robotics domain we illustrate the benefits of template DDs for modeling and explaining meta controllers, i.e., hierarchical control structures with underspecified entities. Further, we implement a template-generating refactoring method for DTs. Our evaluation on standard controller benchmarks shows that template DDs can improve explainability of controller DTs by reducing their sizes by more than one order of magnitude.

Details

OriginalspracheEnglisch
TitelExplainable Artificial Intelligence
Redakteure/-innenLuca Longo, Sebastian Lapuschkin, Christin Seifert
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten219-242
Seitenumfang24
ISBN (elektronisch)978-3-031-63797-1
ISBN (Print)978-3-031-63796-4
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheCommunications in Computer and Information Science
Band2154 CCIS
ISSN1865-0929

Konferenz

Titel2nd World Conference on eXplainable Artificial Intelligence
KurztitelxAI 2024
Veranstaltungsnummer2
Dauer17 - 19 Juli 2024
BekanntheitsgradInternationale Veranstaltung
OrtMediterranean Conference Centre
StadtValletta
LandMalta

Schlagworte

Schlagwörter

  • Control, Decision Diagrams, Decision Trees, Explainability