Tau accelerates tubulin exchange in the microtubule lattice

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Subham Biswas - , Universität des Saarlandes (Autor:in)
  • Rahul Grover - , Professur für BioNano-Werkzeuge (Autor:in)
  • Cordula Reuther - , Professur für BioNano-Werkzeuge (Autor:in)
  • Chetan S. Poojari - , Universität des Saarlandes, PharmaScienceHub (PSH) (Autor:in)
  • Reza Shaebani - , Universität des Saarlandes (Autor:in)
  • Shweta Nandakumar - , Universität des Saarlandes (Autor:in)
  • Mona Grünewald - , Universität des Saarlandes (Autor:in)
  • Amir Zablotsky - , Université Grenoble Alpes (Autor:in)
  • Jochen S. Hub - , Universität des Saarlandes, PharmaScienceHub (PSH) (Autor:in)
  • Stefan Diez - , Exzellenzcluster PoL: Physik des Lebens, Professur für BioNano-Werkzeuge, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Karin John - , Université Grenoble Alpes (Autor:in)
  • Laura Schaedel - , Universität des Saarlandes, PharmaScienceHub (PSH) (Autor:in)

Abstract

Microtubules are cytoskeletal filaments characterized by dynamic instability at their tips and a dynamic lattice that undergoes continuous tubulin loss and incorporation. Tau, a neuronal microtubule-associated protein, is well known for its role in stabilizing microtubule tips and promoting microtubule bundling. Here we demonstrate that tau also modulates microtubule lattice dynamics. Although tau lacks enzymatic activity, it significantly accelerates tubulin exchange within the lattice, particularly at topological defect sites. Our findings indicate that tau enhances lattice anisotropy by stabilizing longitudinal tubulin–tubulin interactions while destabilizing lateral ones, thereby enhancing the mobility and annihilation of lattice defects. These results challenge the traditional view of tau as merely a passive stabilizer, revealing its active role in dynamically remodelling the microtubule lattice structure.

Details

OriginalspracheEnglisch
Seiten (von - bis)1616-1628
Seitenumfang13
FachzeitschriftNature physics
Jahrgang21
Ausgabenummer10
Frühes Online-Datum4 Sept. 2025
PublikationsstatusVeröffentlicht - Okt. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-0750-8515/work/192041086

Schlagworte

ASJC Scopus Sachgebiete