Talc as an anti-wear functional filler in glass-ionomer cements

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Magdalena Łępicka - , Białystok University of Technology (Autor:in)
  • Agnieszka Magryś - , Medical University of Lublin (Autor:in)
  • Vera Guduric - , Zentrum für Translationale Knochen-, Gelenk- und Weichgewebeforschung (Autor:in)
  • Agata Roguska - , Polish Academy of Sciences (Autor:in)
  • Magdalena Urszula Rodziewicz - , Białystok University of Technology (Autor:in)
  • Klaudia Nowicka - , Białystok University of Technology (Autor:in)
  • Michał Wójcik - , Independent Unit of Tissue Engineering and Regenerative Medicine (Autor:in)
  • Marcin Hołdyński - , Polish Academy of Sciences (Autor:in)
  • Anne Bernhardt - , Zentrum für Translationale Knochen-, Gelenk- und Weichgewebeforschung (Autor:in)
  • Maja Ptasiewicz - , Medical University of Lublin (Autor:in)
  • Adriana Dowbysz - , Białystok University of Technology (Autor:in)
  • Renata Chałas - , Medical University of Lublin (Autor:in)
  • Monika Kalinowska - , Białystok University of Technology (Autor:in)
  • Marcin Pisarek - , Polish Academy of Sciences (Autor:in)
  • Michael Gelinsky - , Zentrum für Translationale Knochen-, Gelenk- und Weichgewebeforschung (Autor:in)
  • Krzysztof Jan Kurzydłowski - , Białystok University of Technology (Autor:in)

Abstract

Permanent restorations with glass-ionomer cements (GICs) show insufficient friction and wear properties. To address this issue, we propose the use of a non-toxic solid lubricant, magnesium hydrosilicate (talc), in the form of 5–60 µm lamellar microparticles as a potential anti-wear and anti-cariogenic filler of GICs. In vitro characterization of a GIC modified with 5 wt% of talc demonstrated a 50 % reduction in its tribological wear. The proposed modification also positively influenced the bioactivity of the GICs by altering their roughness and ion release profile, without affecting the response of human primary gingival epithelial and fibroblast cells to the tested material. The modified cements exhibited also enhanced antimicrobial action by reducing the viability of S. mutans and L. acidophilus cariogenic bacteria in the biofilm.

Details

OriginalspracheEnglisch
Aufsatznummer110210
FachzeitschriftTribology international
Jahrgang201
PublikationsstatusVeröffentlicht - Jan. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-9075-5121/work/173988963

Schlagworte

Schlagwörter

  • Dental materials, Glass-ionomer cement, Magnesium hydrosilicate, Restorative materials, Talc