Synthesis of BiRh nanoplates with superior catalytic performance in the semihydrogenation of acetylene

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Daniel Köhler - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Martin Heise - , Professur für Anorganische Chemie (II) (AC2), Technische Universität Dresden (Autor:in)
  • Alexey I. Baranov - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Yuan Luo - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Dorin Geiger - , Technische Universität Dresden (Autor:in)
  • Michael Ruck - , Professur für Anorganische Chemie (II) (AC2), Max-Planck-Institut für Chemische Physik fester Stoffe, Technische Universität Dresden (Autor:in)
  • Marc Armbrüster - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)

Abstract

Highly uniform and well-crystallized nanoparticles of the intermetallic compound BiRh were obtained by low-temperature synthesis at 240 °C using the microwave-assisted polyol process. In this time- and energy-efficient reaction the polyol acts as solvent, reducing agent, and surfactant, while the microwave radiation leads to fast and homogeneous nucleation and crystal growth. Electron microscopy studies confirmed the presence of pseudohexagonal nanoplates with a primary particle diameter of 60 nm and high crystallinity. As indicated by high-resolution transmission electron microscopy, the plate normal is generally not parallel to [001] but coincides with [421]. Powder X-ray diffraction and energy dispersive X-ray spectroscopy revealed the single-phase nature and the equimolar composition. The specific surface area (0.54 m 2 g -1) and the particle size distribution were measured by fractional sedimentation. According to the analysis of the chemical bonding by means of quantum chemical calculations, 0.62 electrons are transferred from Bi to Rh. Covalent homoatomic Rh-Rh as well as heteroatomic three-center Rh-Bi-Rh bonds define a three-dimensional bonding network. Unsupported BiRh nanoparticles exhibit an extraordinary high selectivity of 88 to 93% in the semihydrogenation of acetylene, which makes them an interesting model compound as well as a promising candidate for the application as an industrial catalyst.

Details

OriginalspracheEnglisch
Seiten (von - bis)1639-1644
Seitenumfang6
FachzeitschriftChemistry of materials
Jahrgang24
Ausgabenummer9
PublikationsstatusVeröffentlicht - 8 Mai 2012
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-2391-6025/work/159171974

Schlagworte

Schlagwörter

  • BiRh, intermetallic compound, nanoparticles, selective hydrogenation