Synthesis and characterization of transparent luminescent ZnS:Mn/PMMA nanocomposites

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • H. Althues - , Technische Universität Dresden (Autor:in)
  • R. Palkovits - , Max Planck Institute for Coal Research (Autor:in)
  • A. Rumplecker - , Max Planck Institute for Coal Research (Autor:in)
  • P. Simon - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • W. Sigle - , Max-Planck-Institut für Intelligente Systeme (Autor:in)
  • M. Bredol - , FH Münster – University of Applied Sciences (Autor:in)
  • U. Kynast - , FH Münster – University of Applied Sciences (Autor:in)
  • S. Kaskel - , Professur für Anorganische Chemie (I) (AC1) (Autor:in)

Abstract

Transparent luminescent nanocomposites were obtained using the bulk polymerization of transparent dispersions containing manganese-doped ZnS nanoparticles with a crystallite size of 2 nm in a mixture of methyl methacrylate and acrylic acid. The effective diameter in the monomer dispersions is 22 nm as determined using dynamic light scattering and depends on the composition of the continuous phase but is significantly higher than the primary crystallite size of the ZnS:Mn nanoparticles initially obtained from the precipitation reaction. The dispersions are stable up to 8 months. Deprotonated carboxylate groups are detected in IR spectra (1547, 1437 cm-1) of particles isolated from a stable dispersion indicating the presence of surface-bound acrylate molecules. Thermal bulk polymerization of the entire dispersions is suitable for production of luminescent acrylic glasses with an emission maximum at 590 nm (330 nm excitation) and a quantum yield of 29.8%. Ultramicrotome cuts of the nanocomposites with a thickness of 50-100 nm were prepared for transmission electron microscopic investigations. In the micrographs, a low degree of agglomeration is observed and the agglomerate diameter is below 20 nm. In the nanocomposites, light scattering and turbidity is minimized due to the small particle size and high degree of dispersion, resulting in highly transparent acrylic glasses with a transmittance as high as 87% (600 nm).

Details

OriginalspracheEnglisch
Seiten (von - bis)1068-1072
Seitenumfang5
FachzeitschriftChemistry of materials
Jahrgang18
Ausgabenummer4
PublikationsstatusVeröffentlicht - 21 Feb. 2006
Peer-Review-StatusJa