SynopSys: Foundations for multidimensional graph analytics

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

The past few years have seen a tremendous increase in often irregularly structured data that can be represented most naturally and efficiently in the form of graphs. Making sense of incessantly growing graphs is not only a key requirement in applications like social media analysis or fraud detection but also a necessity in many traditional enterprise scenarios. Thus, a flexible approach for multidimensional analysis of graph data is needed. Whereas many existing technologies require up-front modelling of analytical scenarios and are difficult to adapt to changes, our approach allows for ad-hoc analytical queries of graph data. Extending our previous work on graph summarization, in this position paper we lay the foundation for large graph analytics to enable business intelligence on graph-structured data.

Details

OriginalspracheEnglisch
TitelEnabling Real-Time Business Intelligence
Redakteure/-innenMalu Castellanos, Torben Bach Pedersen, Nesime Tatbul, Umeshwar Dayal
Herausgeber (Verlag)Springer-Verlag
Seiten159-166
Seitenumfang8
ISBN (elektronisch)978-3-662-46839-5
ISBN (Print)978-3-662-46838-8
PublikationsstatusVeröffentlicht - 2015
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Business Information Processing
Band206
ISSN1865-1348

Konferenz

TitelInternational Workshops on Business Intelligence for the Real-Time Enterprise, BIRTE 2013 and BIRTE 2014
Dauer1 September 2014
StadtHangzhou
LandChina

Externe IDs

ORCID /0000-0001-8107-2775/work/199215566

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Schlagwörter

  • Graph analytics, Graph databases, Graph OLAP