Synaptic Scaling Enables Dynamically Distinct Short- and Long-Term Memory Formation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Christian Tetzlaff - , Georg-August-Universität Göttingen, Max Planck Institute for Dynamics and Self-Organization, Bernstein Center for Computational Neuroscience Göttingen (Autor:in)
  • Christoph Kolodziejski - , Georg-August-Universität Göttingen, Max Planck Institute for Dynamics and Self-Organization, Bernstein Center for Computational Neuroscience Göttingen (Autor:in)
  • Marc Timme - , Georg-August-Universität Göttingen, Max Planck Institute for Dynamics and Self-Organization, Bernstein Center for Computational Neuroscience Göttingen (Autor:in)
  • Misha Tsodyks - , Weizmann Institute of Science (Autor:in)
  • Florentin Wörgötter - , Georg-August-Universität Göttingen, Bernstein Center for Computational Neuroscience Göttingen (Autor:in)

Abstract

Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation, to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling - a slow process usually associated with the maintenance of activity homeostasis - combined with synaptic plasticity may simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories, providing a dynamic link between early and late memory formation processes.

Details

OriginalspracheEnglisch
Aufsatznummere1003307
FachzeitschriftPLOS computational biology
Jahrgang9
Ausgabenummer10
PublikationsstatusVeröffentlicht - 31 Okt. 2013
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 24204240
ORCID /0000-0002-5956-3137/work/142242478