Surgical data science – from concepts toward clinical translation

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Lena Maier-Hein - , Deutsches Krebsforschungszentrum (DKFZ), Universität Heidelberg (Autor:in)
  • Matthias Eisenmann - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Duygu Sarikaya - , Gazi University, Université de Rennes 1 (Autor:in)
  • Keno März - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Toby Collins - , Université de Strasbourg (Autor:in)
  • Anand Malpani - , Johns Hopkins University (Autor:in)
  • Johannes Fallert - , Karl Storz SE & Co. KG (Autor:in)
  • Hubertus Feussner - , Technische Universität München (Autor:in)
  • Stamatia Giannarou - , Imperial College London (Autor:in)
  • Pietro Mascagni - , Université de Strasbourg, Institute of Image-Guided Surgery (Autor:in)
  • Hirenkumar Nakawala - , University of Verona (Autor:in)
  • Adrian Park - , Anne Arundel Health System, Johns Hopkins University (Autor:in)
  • Carla Pugh - , Stanford University (Autor:in)
  • Danail Stoyanov - , University College London (Autor:in)
  • Swaroop S. Vedula - , Johns Hopkins University (Autor:in)
  • Kevin Cleary - , Children's National Hospital (Autor:in)
  • Gabor Fichtinger - , Queen's University Kingston (Autor:in)
  • Germain Forestier - , Université de Haute-Alsace, Monash University (Autor:in)
  • Bernard Gibaud - , Université de Rennes 1 (Autor:in)
  • Teodor Grantcharov - , University of Toronto (Autor:in)
  • Makoto Hashizume - , Kyushu University, Kitakyushu Koga Hospital (Autor:in)
  • Doreen Heckmann-Nötzel - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Hannes G. Kenngott - , Universität Heidelberg (Autor:in)
  • Ron Kikinis - , Harvard University (Autor:in)
  • Lars Mündermann - , Karl Storz SE & Co. KG (Autor:in)
  • Nassir Navab - , Technische Universität München, Johns Hopkins University (Autor:in)
  • Sinan Onogur - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Tobias Roß - , Deutsches Krebsforschungszentrum (DKFZ), Universität Heidelberg (Autor:in)
  • Raphael Sznitman - , Universität Bern (Autor:in)
  • Russell H. Taylor - , Johns Hopkins University (Autor:in)
  • Minu D. Tizabi - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Martin Wagner - , Universitätsklinikum Heidelberg (Autor:in)
  • Gregory D. Hager - , Johns Hopkins University (Autor:in)
  • Thomas Neumuth - , Universität Leipzig (Autor:in)
  • Nicolas Padoy - , Université de Strasbourg, Institute of Image-Guided Surgery (Autor:in)
  • Justin Collins - , University College London (Autor:in)
  • Ines Gockel - , Universität Leipzig (Autor:in)
  • Jan Goedeke - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Daniel A. Hashimoto - , Case Western Reserve University, Harvard University (Autor:in)
  • Luc Joyeux - , KU Leuven, Texas Children's Hospital Houston (Autor:in)
  • Kyle Lam - , Imperial College London (Autor:in)
  • Daniel R. Leff - , Imperial College London, Imperial College Healthcare NHS Trust (Autor:in)
  • Amin Madani - , University of Toronto (Autor:in)
  • Hani J. Marcus - , University College London (Autor:in)
  • Ozanan Meireles - , Harvard University (Autor:in)
  • Alexander Seitel - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Dogu Teber - , Städtisches Klinikum Karlsruhe gGmbH (Autor:in)
  • Frank Ückert - , Universität Hamburg (Autor:in)
  • Beat P. Müller-Stich - , Universität Heidelberg (Autor:in)
  • Pierre Jannin - , Université de Rennes 1 (Autor:in)
  • Stefanie Speidel - , Nationales Centrum für Tumorerkrankungen Dresden, Exzellenzcluster CeTI: Zentrum für Taktiles Internet (Autor:in)

Abstract

Recent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, analysis and modeling of data. While an increasing number of data-driven approaches and clinical applications have been studied in the fields of radiological and clinical data science, translational success stories are still lacking in surgery. In this publication, we shed light on the underlying reasons and provide a roadmap for future advances in the field. Based on an international workshop involving leading researchers in the field of SDS, we review current practice, key achievements and initiatives as well as available standards and tools for a number of topics relevant to the field, namely (1) infrastructure for data acquisition, storage and access in the presence of regulatory constraints, (2) data annotation and sharing and (3) data analytics. We further complement this technical perspective with (4) a review of currently available SDS products and the translational progress from academia and (5) a roadmap for faster clinical translation and exploitation of the full potential of SDS, based on an international multi-round Delphi process.

Details

OriginalspracheEnglisch
Aufsatznummer102306
Seitenumfang46
FachzeitschriftMedical Image Analysis
Jahrgang76 (2022)
PublikationsstatusVeröffentlicht - 18 Nov. 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85120910690
PubMed 34879287
ORCID /0000-0002-4590-1908/work/163293960

Schlagworte

Schlagwörter

  • Artificial intelligence, Clinical translation, Computer aided surgery, Deep learning, Surgical data science