Superior high-temperature rate performance of LiFePO4 cathode: The stabilizing effect of a multicomponent gel biopolymer binder

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ling Ding - , Professur für Metallische Werkstoffe und Metallphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Rita Leones - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Toni Schmeida - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Kornelius Nielsch - , Professur für Metallische Werkstoffe und Metallphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Technische Universität Dresden (Autor:in)
  • Daria Mikhailova - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)

Abstract

A quasi-solid-state polymer gel binder (PGB) has been prepared and investigated for application in high-temperature lithium-ion batteries. The effects of binder on the aging behavior of LiFePO4 (LFP) cathodes were investigated by electrochemical methods and post mortem analysis. Conventional binder polyvinylidene difluoride (PVDF) was used as a benchmark. At 60 °C, LFP/PGB half cells delivered a capacity of 98 mAh g−1, which corresponds to 92% of the initial value 140 mA g−1 over 1000 cycles at 10C. These results were far superior to the ones obtained for LFP with PVDF which only exhibited a capacity of 58 mAh g−1. We showed that a significant degradation of LFP in the LFP/PVDF electrode accompanied by iron dissolution in the electrolyte and deposition on the anodic surface together with a strong swelling of PVDF in the electrolyte as well as some contact loss between the electrode and the current collector represent the main reasons for the capacity fading at 60 °C. In contrast, these effects were much less pronounced in the LFP/PGB electrode. Furthermore, thick LFP/PGB electrodes with 450 μm thickness, corresponding to a 4.5 mg cm−2 mass loading, showed a better cycling performance and more favorable electrochemical kinetics than the electrode incorporating PVDF.

Details

OriginalspracheEnglisch
Aufsatznummer230955
FachzeitschriftJournal of power sources
Jahrgang521
PublikationsstatusVeröffentlicht - 15 Feb. 2022
Peer-Review-StatusJa

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Biopolymer, High-temperature battery operation, Lithium iron phosphate, Lithium-ion batteries, Polymer gel binder