Superconvergence of a Galerkin FEM for Higher-Order Elements in Convection-Diffusion Problems
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper we present a first supercloseness analysis for higher-order Galerkin FEM applied to a singularly perturbed convection-diffusion problem. Using a solution decomposition and a special representation of our finite element space, we are able to prove a supercloseness property of p + 1/4 in the energy norm where the polynomial order p >= 3 is odd.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 356-373 |
| Seitenumfang | 18 |
| Fachzeitschrift | Numerical mathematics-Theory methods and applications |
| Jahrgang | 7 |
| Ausgabenummer | 3 |
| Publikationsstatus | Veröffentlicht - Aug. 2014 |
| Peer-Review-Status | Ja |
Externe IDs
| Scopus | 84906235804 |
|---|---|
| ORCID | /0000-0002-2458-1597/work/142239708 |
Schlagworte
Schlagwörter
- Singular perturbation, layer-adapted meshes, superconvergence, postprocessing, SHISHKIN MESH