Substructuring Methods in Nonlinear Function Spaces
Publikation: Beitrag zu Konferenzen › Paper › Beigetragen › Begutachtung
Beitragende
Abstract
We generalize substructuring methods to problems for functions v: Ω → M, where Ω is a domain in ℝ𝑑 and M is a Riemannian manifold. Examples for such functions include configurations of liquid crystals, ferromagnets, and deformations of Cosserat materials. We show that a substructuring theory can be developed for such problems. While the theory looks very similar to the linear theory on a formal level, the objects it deals with are much more general. In particular, iterates of the algorithms are elements of nonlinear Sobolev spaces, and test functions are replaced by sections in certain vector bundles. We derive various solution algorithms based on preconditioned Richardson iterations for a nonlinear Steklov–Poincaré formulation. Preconditioners appear as bundle homomorphisms. As a numerical example we compute the deformation of a geometrically exact Cosserat shell with a Neumann–Neumann algorithm.
Details
Originalsprache | Englisch |
---|---|
Seiten | 53-64 |
Seitenumfang | 12 |
Publikationsstatus | Veröffentlicht - 2016 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Konferenz
Titel | International Conference on Domain Decomposition Methods |
---|---|
Kurztitel | DDM |
Veranstaltungsnummer | |
Dauer | 16 - 20 September 2013 |
Bekanntheitsgrad | Internationale Veranstaltung |
Ort | Lugano |
Stadt | |
Land | Schweiz |
Externe IDs
Scopus | 84961209223 |
---|---|
ORCID | /0000-0003-1093-6374/work/142250552 |
Schlagworte
Schlagwörter
- domain decomposition, manifold-valued PDE, substructuring method