Substructuring Methods in Nonlinear Function Spaces

Publikation: Beitrag zu KonferenzenPaperBeigetragenBegutachtung

Beitragende

  • Oliver Sander - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)

Abstract

We generalize substructuring methods to problems for functions v: Ω → M, where Ω is a domain in ℝ𝑑 and M is a Riemannian manifold. Examples for such functions include configurations of liquid crystals, ferromagnets, and deformations of Cosserat materials. We show that a substructuring theory can be developed for such problems. While the theory looks very similar to the linear theory on a formal level, the objects it deals with are much more general. In particular, iterates of the algorithms are elements of nonlinear Sobolev spaces, and test functions are replaced by sections in certain vector bundles. We derive various solution algorithms based on preconditioned Richardson iterations for a nonlinear Steklov–Poincaré formulation. Preconditioners appear as bundle homomorphisms. As a numerical example we compute the deformation of a geometrically exact Cosserat shell with a Neumann–Neumann algorithm.

Details

OriginalspracheEnglisch
Seiten53-64
Seitenumfang12
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

TitelInternational Conference on Domain Decomposition Methods
KurztitelDDM
Veranstaltungsnummer
Dauer16 - 20 September 2013
BekanntheitsgradInternationale Veranstaltung
OrtLugano
Stadt
LandSchweiz

Externe IDs

Scopus 84961209223
ORCID /0000-0003-1093-6374/work/142250552

Schlagworte

Schlagwörter

  • domain decomposition, manifold-valued PDE, substructuring method