Subnanometre-wide electron channels protected by topology

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Christian Pauly - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Bertold Rasche - , Professur für Anorganische Chemie (II) (AC2) (Autor:in)
  • Klaus Koepernik - , Leibniz Institute for Solid State and Materials Research Dresden, Technische Universität Dresden (Autor:in)
  • Marcus Liebmann - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Marco Pratzer - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Manuel Richter - , Leibniz Institute for Solid State and Materials Research Dresden, Technische Universität Dresden (Autor:in)
  • Jens Kellner - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Markus Eschbach - , Forschungszentrum Jülich (Autor:in)
  • Bernhard Kaufmann - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Lukasz Plucinski - , Forschungszentrum Jülich (Autor:in)
  • Claus M. Schneider - , Forschungszentrum Jülich (Autor:in)
  • Michael Ruck - , Professur für Anorganische Chemie (II) (AC2), Max Planck Institute for Chemical Physics of Solids (Autor:in)
  • Jeroen Van Den Brink - , Professur für Festkörpertheorie (gB/IFW), Leibniz Institute for Solid State and Materials Research Dresden (Autor:in)
  • Markus Morgenstern - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)

Abstract

Helical locking of spin and momentum and prohibited backscattering are the key properties of topologically protected states. They are expected to enable novel types of information processing by providing pure spin currents, or fault tolerant quantum computation by using the Majorana fermions at interfaces of topological states with superconductors. So far, the required helical conduction channels used to realize Majorana fermions are generated through the application of an axial magnetic field to conventional semiconductor nanowires. Avoiding the magnetic field enhances the possibilities for circuit design significantly. Here, we show that subnanometre-wide electron channels with natural helicity are present at surface step edges of the weak topological insulator Bi 14 Rh 3 I 9 (ref.). Scanning tunneling spectroscopy reveals the electron channels to be continuous in both energy and space within a large bandgap of 200 meV, evidencing its non-trivial topology. The absence of these channels in the closely related, but topologically trivial compound Bi 13 Pt 3 I 7 corroborates the channels'topological nature. The backscatter-free electron channels are a direct consequence of Bi 14 Rh 3 I 9 's structure: a stack of two-dimensional topologically insulating, graphene-like planes separated by trivial insulators. We demonstrate that the surface of Bi 14 Rh 3 I 9 can be engraved using an atomic force microscope, allowing networks of protected channels to be patterned with nanometre precision.

Details

OriginalspracheEnglisch
Seiten (von - bis)338-343
Seitenumfang6
FachzeitschriftNature physics
Jahrgang11
Ausgabenummer4
PublikationsstatusVeröffentlicht - 8 Apr. 2015
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-2391-6025/work/159171897

Schlagworte

ASJC Scopus Sachgebiete