Submodular functions and valued constraint satisfaction problems over infinite domains

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Valued constraint satisfaction problems (VCSPs) are a large class of combinatorial optimisation problems. It is desirable to classify the computational complexity of VCSPs depending on a fixed set of allowed cost functions in the input. Recently, the computational complexity of all VCSPs for finite sets of cost functions over finite domains has been classified in this sense. Many natural optimisation problems, however, cannot be formulated as VCSPs over a finite domain. We initiate the systematic investigation of infinite-domain VCSPs by studying the complexity of VCSPs for piecewise linear homogeneous cost functions. We remark that in this paper the infinite domain will always be the set of rational numbers. We show that such VCSPs can be solved in polynomial time when the cost functions are additionally submodular, and that this is indeed a maximally tractable class: adding any cost function that is not submodular leads to an NP-hard VCSP.

Details

OriginalspracheEnglisch
TitelComputer Science Logic 2018, CSL 2018
Redakteure/-innenDan R. Ghica, Achim Jung
Herausgeber (Verlag)Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Print)9783959770880
PublikationsstatusVeröffentlicht - 1 Aug. 2018
Peer-Review-StatusJa

Publikationsreihe

ReiheLeibniz international proceedings in informatics : LIPIcs
Band119
ISSN1868-8969

Konferenz

Titel27th Annual EACSL Conference Computer Science Logic, CSL 2018
Dauer4 - 7 September 2018
StadtBirmingham
LandGroßbritannien/Vereinigtes Königreich

Externe IDs

ORCID /0000-0001-8228-3611/work/142241088

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Constraint satisfaction, Model theory, Optimisation, Piecewise linear functions, Semilinear, Submodular functions, Valued constraint satisfaction problems