Submodular functions and valued constraint satisfaction problems over infinite domains
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Valued constraint satisfaction problems (VCSPs) are a large class of combinatorial optimisation problems. It is desirable to classify the computational complexity of VCSPs depending on a fixed set of allowed cost functions in the input. Recently, the computational complexity of all VCSPs for finite sets of cost functions over finite domains has been classified in this sense. Many natural optimisation problems, however, cannot be formulated as VCSPs over a finite domain. We initiate the systematic investigation of infinite-domain VCSPs by studying the complexity of VCSPs for piecewise linear homogeneous cost functions. We remark that in this paper the infinite domain will always be the set of rational numbers. We show that such VCSPs can be solved in polynomial time when the cost functions are additionally submodular, and that this is indeed a maximally tractable class: adding any cost function that is not submodular leads to an NP-hard VCSP.
Details
Originalsprache | Englisch |
---|---|
Titel | Computer Science Logic 2018, CSL 2018 |
Redakteure/-innen | Dan R. Ghica, Achim Jung |
Herausgeber (Verlag) | Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |
ISBN (Print) | 9783959770880 |
Publikationsstatus | Veröffentlicht - 1 Aug. 2018 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Leibniz international proceedings in informatics : LIPIcs |
---|---|
Band | 119 |
ISSN | 1868-8969 |
Konferenz
Titel | 27th Annual EACSL Conference Computer Science Logic, CSL 2018 |
---|---|
Dauer | 4 - 7 September 2018 |
Stadt | Birmingham |
Land | Großbritannien/Vereinigtes Königreich |
Externe IDs
ORCID | /0000-0001-8228-3611/work/142241088 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Constraint satisfaction, Model theory, Optimisation, Piecewise linear functions, Semilinear, Submodular functions, Valued constraint satisfaction problems