Subgeometric rates of convergence for Markov processes under subordination
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We are interested in the rate of convergence of a subordinate Markov process to its invariant measure. Given a subordinator and the corresponding Bernstein function (Laplace exponent), we characterize the convergence rate of the subordinate Markov process; the key ingredients are the rate of convergence of the original process and the (inverse of the) Bernstein function. At a technical level, the crucial point is to bound three types of moment (subexponential, algebraic, and logarithmic) for subordinators as time t tends to ∞. We also discuss some concrete models and we show that subordination can dramatically change the speed of convergence to equilibrium.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 162-181 |
Seitenumfang | 20 |
Fachzeitschrift | Advances in Applied Probability |
Jahrgang | 49 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 1 März 2017 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Bernstein function, invariant measure, Markov process, moment estimate, Rate of convergence, subordination