Structure-preserving discontinuous Galerkin approximation of a hyperbolic-parabolic system

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Markus Bause - , Universität der Bundeswehr Hamburg (Helmut-Schmidt Universität Hamburg) (Autor:in)
  • Sebastian Franz - , Institut für Wissenschaftliches Rechnen (Autor:in)
  • Mathias Anselmann - , Universität der Bundeswehr Hamburg (Helmut-Schmidt Universität Hamburg) (Autor:in)

Abstract

We study the numerical approximation of a coupled hyperbolic-parabolic system by a family of discontinuous Galerkin (DG) space-time finite element methods. The model is rewritten as a first-order evolutionary problem that is treated by a unified abstract solution theory. For the discretization in space, generalizations of the distribution gradient and divergence operators on broken polynomial spaces are defined. Since their skew-selfadjointness is perturbed by boundary surface integrals, adjustments are introduced such that the skew-selfadjointness of the discrete counterpart of the total system’s first-order differential operator in space is recovered. Well-posedness of the fully discrete problem and error estimates for the DG approximation in space and time are proved.

Details

OriginalspracheEnglisch
Seiten (von - bis)1-32
Seitenumfang32
FachzeitschriftElectronic transactions on numerical analysis
Jahrgang63
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-2458-1597/work/182335418

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Coupled hyperbolic-parabolic problem, discontinuous Galerkin space-time discretization, error estimates, first-order system, Picard’s theorem