Structural relationship between calcite-gelatine composites and biogenic (Human) otoconia

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Paul Simon - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Wilder Carrillo-Cabrera - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Ya Xi Huang - , Xiamen University (Autor:in)
  • Jana Buder - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Horst Borrmann - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Raul Cardoso-Gil - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Elena Rosseeva - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Yuri Yarin - , Technische Universität Dresden (Autor:in)
  • Thomas Zahnert - , Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde (Autor:in)
  • Rüdiger Kniep - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)

Abstract

Biogenic otoconia (ear dust) are composite materials of calcite with about 2 wt.-% proteins showing an average longitudinal size of about 10 μm. The tiny biomineral particles are situated in the inner ear (in the maculae) and act as sensors for gravity and linear acceleration. Our comparative study of calcite-gelatine composites (grown by double diffusion) and human otoconia is based on decalcification experiments, scanning electron microscopy, TEM and X-ray investigations in order to obtain a complete picture of the 3D structure and morphogenesis of the materials. Otoconia as calcite-protein composites display a cylindrical body with terminal rhombohedral faces intersecting at the pointed ends. As evidenced by TEM on focused ion beam cuts, both the artificial composites and human otoconia show a particular distribution of areas with different volume densities leading to a dumbbell-shape of the more dense parts consisting of rhombohedral branches (with end faces) and a less ordered, less dense area (the belly region). The peculiar inner architecture of otoconia with its dumbbell-shaped mass/density distribution is assumed to be necessary for optimal sensing of linear accelerations.

Details

OriginalspracheEnglisch
Seiten (von - bis)5370-5377
Seitenumfang8
FachzeitschriftEuropean journal of inorganic chemistry
Jahrgang2011
Ausgabenummer35
PublikationsstatusVeröffentlicht - Dez. 2011
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-3894-1175/work/148603828

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Biomimetic synthesis, Biomineralization, Calcite, Human otoconia, Organic-inorganic composites, Structure determination