Strong stability of bounded evolution families and semigroups

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Charles Batty - (Autor:in)
  • Ralph Chill - , Universität Ulm (Autor:in)
  • Yuri Tomilov - (Autor:in)

Abstract

We prove several characterizations of strong stability of uniformly bounded evolution families (U(t,s))t⩾s⩾0 of bounded operators on a Banach space X, i.e. we characterize the property limt→∞ ∥U(t,s)x∥=0 for all s⩾0 and all x∈X. These results are connected to the asymptotic stability of the well-posed linear nonautonomous Cauchy problem

In the autonomous case, i.e. when U(t,s)=T(t−s) for some C0-semigroup (T(t))t⩾0, we present, in addition, a range condition on the generator A of (T(t))t⩾0 which is sufficient for strong stability. This condition is more general than the condition in the ABLV-Theorem involving countability of the imaginary part of the spectrum of A.

Details

OriginalspracheEnglisch
Seiten (von - bis)116-139
FachzeitschriftJournal of Functional Analysis
Jahrgang2002
Ausgabenummer193
PublikationsstatusVeröffentlicht - 2002
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0002-6854-0586/work/144109122
Scopus 0036695950

Schlagworte

Bibliotheksschlagworte