Strong convergence of the Euler–Maruyama approximation for a class of Lévy-driven SDEs

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Consider the following stochastic differential equation (SDE) dXt=b(t,Xt−)dt+dLt,X0=x,driven by a d-dimensional Lévy process (Lt)t≥0. We establish conditions on the Lévy process and the drift coefficient b such that the Euler–Maruyama approximation converges strongly to a solution of the SDE with an explicitly given rate. The convergence rate depends on the regularity of b and the behaviour of the Lévy measure at the origin. As a by-product of the proof, we obtain that the SDE has a pathwise unique solution. Our result covers many important examples of Lévy processes, e.g. isotropic stable, relativistic stable, tempered stable and layered stable.

Details

OriginalspracheEnglisch
Seiten (von - bis)2654-2680
Seitenumfang27
FachzeitschriftStochastic processes and their applications
Jahrgang129
Ausgabenummer8
PublikationsstatusVeröffentlicht - Aug. 2019
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Euler–Maruyama approximation, Stochastic differential equation, Strong convergence