Strong convergence of the Euler–Maruyama approximation for a class of Lévy-driven SDEs
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Consider the following stochastic differential equation (SDE) dXt=b(t,Xt−)dt+dLt,X0=x,driven by a d-dimensional Lévy process (Lt)t≥0. We establish conditions on the Lévy process and the drift coefficient b such that the Euler–Maruyama approximation converges strongly to a solution of the SDE with an explicitly given rate. The convergence rate depends on the regularity of b and the behaviour of the Lévy measure at the origin. As a by-product of the proof, we obtain that the SDE has a pathwise unique solution. Our result covers many important examples of Lévy processes, e.g. isotropic stable, relativistic stable, tempered stable and layered stable.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2654-2680 |
Seitenumfang | 27 |
Fachzeitschrift | Stochastic processes and their applications |
Jahrgang | 129 |
Ausgabenummer | 8 |
Publikationsstatus | Veröffentlicht - Aug. 2019 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Euler–Maruyama approximation, Stochastic differential equation, Strong convergence