Stretchable thin film mechanical-strain-gated switches and logic gate functions based on a soft tunneling barrier

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragen



Mechanical-strain-gated switches are cornerstone components of material-embedded circuits that perform logic operations without using conventional electronics. This technology requires a single material system to exhibit three distinct functionalities: strain-invariant conductivity and an increase or decrease of conductivity upon mechanical deformation. Herein, mechanical-strain-gated electric switches based on a thin-film architecture that features an insulator-to-conductor transition when mechanically stretched are demonstrated. The conductivity changes by nine orders of magnitude over a wide range of tunable working strains (as high as 130%). The approach relies on a nanometer-scale sandwiched bilayer Au thin film with an ultrathin poly(dimethylsiloxane) elastomeric barrier layer; applied strain alters the electron tunneling currents through the barrier. Mechanical-force-controlled electric logic circuits are achieved by realizing strain-controlled basic (AND and OR) and universal (NAND and NOR) logic gates in a single system. The proposed material system can be used to fabricate material-embedded logics of arbitrary complexity for a wide range of applications including soft robotics, wearable/implantable electronics, human–machine interfaces, and Internet of Things.


FachzeitschriftAdvanced materials
PublikationsstatusVeröffentlicht - 14 Okt. 2022

Externe IDs

Scopus 85114310389
Mendeley c0a9f274-b369-3734-b12d-16be69fee401
unpaywall 10.1002/adma.202104769
WOS 000693699300001
ORCID /0000-0001-6778-7846/work/142240145



  • logic gates, strain-gated electric switches, stretchable circuits, thin films, tunneling, PRESSURE, CONDUCTORS, SENSOR, ELECTRONIC SKIN, SILVER NANOPARTICLES