Strain Effects in Ru-Au Bimetallic Aerogels Boost Electrocatalytic Hydrogen Evolution

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Wei Wei - , Jiangsu University, Technische Universität Dresden (Autor:in)
  • Fei Guo - , Jiangsu University (Autor:in)
  • Cui Wang - , Professur für Physikalische Chemie, Technische Universität Dresden (Autor:in)
  • Lingwei Wang - , Shandong University (Autor:in)
  • Zhizhi Sheng - , CAS - Suzhou Institute of Nano-Tech and Nano-Bionics (Autor:in)
  • Xiaodong Wu - , Nanjing Tech University (Autor:in)
  • Bin Cai - , Shandong University (Autor:in)
  • Alexander Eychmüller - , Professur für Physikalische Chemie, Technische Universität Dresden (Autor:in)

Abstract

To improve the sluggish kinetics of the hydrogen evolution reaction (HER), a key component in water-splitting applications, there is an urgent desire to develop efficient, cost-effective, and stable electrocatalysts. Strain engineering is proving an efficient strategy for increasing the catalytic activity of electrocatalysts. This work presents the development of Ru-Au bimetallic aerogels by a simple one-step in situ reduction-gelation approach, which exhibits strain effects and electron transfer to create a remarkable HER activity and stability in an alkaline environment. The surface strain induced by the bimetallic segregated structure shifts the d-band center downward, enhancing catalysis by balancing the processes of water dissociation, OH* adsorption, and H* adsorption. Specifically, the optimized catalyst shows low overpotentials of only 24.1 mV at a current density of 10 mA cm−2 in alkaline electrolytes, surpassing commercial Pt/C. This study can contribute to the understanding of strain engineering in bimetallic electrocatalysts for HER at the atomic scale.

Details

OriginalspracheEnglisch
Aufsatznummer2310603
FachzeitschriftSmall
Jahrgang20
Ausgabenummer25
PublikationsstatusVeröffentlicht - 19 Juni 2024
Peer-Review-StatusJa

Externe IDs

PubMed 38279621

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • bimetallic aerogels, d-bands, hydrogen evolution reactions, segregated structures, strain engineering