Stop Gambling! It Just Takes Too Long

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in Buch/Sammelband/GutachtenBeigetragenBegutachtung

Abstract

The classical stochastic shortest path problem (SSPP) on integer-weighted Markov decision processes asks for a scheduler that maximizes the expected accumulated weight before reaching a goal state while ensuring that the goal is reached almost surely. In this article, we introduce the positively almost-surely terminating stochastic shortest path problem (PAST-SSPP), a variant of the classical SSPP, where the additional requirement is made that the expected number of steps for reaching the goal has to be finite. We show that PAST-SSPP can be solved in polynomial time. To this end, we provide an extension of the well-known spider construction as introduced by Christel Baier et al. used for the solution of the classical SSPP.

Details

OriginalspracheEnglisch
TitelPrinciples of Formal Quantitative Analysis
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten139-157
Seitenumfang19
ISBN (elektronisch)978-3-031-97439-7
ISBN (Print)978-3-031-97438-0
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - 30 Aug. 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture notes in computer science
BandLNCS 15760
ISSN0302-9743

Externe IDs

ORCID /0000-0003-4829-0476/work/194824700
ORCID /0000-0003-1724-2586/work/194825125

Schlagworte

Schlagwörter

  • almost-sure termination, Markov decision processes, optional stopping theorem, Stochastic shortest path problem