STOCHASTIC TWO-SCALE CONVERGENCE AND YOUNG MEASURES
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper we compare the notion of stochastic two-scale convergence in the mean (by Bourgeat, Mikelić and Wright), the notion of stochastic unfolding (recently introduced by the authors), and the quenched notion of stochastic two-scale convergence (by Zhikov and Pyatnitskii). In particular, we introduce stochastic two-scale Young measures as a tool to compare mean and quenched limits. Moreover, we discuss two examples, which can be naturally analyzed via stochastic unfolding, but which cannot be treated via quenched stochastic two-scale convergence.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 2 |
Seiten (von - bis) | 227-254 |
Seitenumfang | 28 |
Fachzeitschrift | Networks and heterogeneous media |
Jahrgang | 17 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Feb. 2022 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85129134448 |
---|---|
dblp | journals/nhm/HeidaNV22 |
Mendeley | 9cb8e46f-3de0-3e2c-b254-c8ee163290a9 |
unpaywall | 10.3934/nhm.2022004 |
Schlagworte
DFG-Fachsystematik nach Fachkollegium
ASJC Scopus Sachgebiete
Schlagwörter
- stochastic homogenization, unfolding, two-scale convergence, Young measures, weak convergence, PERIODIC UNFOLDING METHOD, HOMOGENIZATION, EXTENSION, SYSTEMS