Stochastic reaction networks in dynamic compartment populations

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Lorenzo Duso - , Zentrum für Systembiologie Dresden (CSBD), Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Christoph Zechner - , Zentrum für Systembiologie Dresden (CSBD), Max Planck Institute of Molecular Cell Biology and Genetics, Technische Universität Dresden, Exzellenzcluster PoL: Physik des Lebens (Autor:in)

Abstract

Compartmentalization of biochemical processes underlies all biological systems, from the organelle to the tissue scale. Theoretical models to study the interplay between noisy reaction dynamics and compartmentalization are sparse, and typically very challenging to analyze computationally. Recent studies have made progress toward addressing this problem in the context of specific biological systems, but a general and sufficiently effective approach remains lacking. In this work, we propose a mathematical framework based on counting processes that allows us to study dynamic compartment populations with arbitrary interactions and internal biochemistry. We derive an efficient description of the dynamics in terms of differential equations which capture the statistics of the population. We demonstrate the relevance of our approach by analyzing models inspired by different biological processes, including subcellular compartmentalization and tissue homeostasis.

Details

OriginalspracheEnglisch
Seiten (von - bis)22674-22683
Seitenumfang10
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America
Jahrgang117
Ausgabenummer37
PublikationsstatusVeröffentlicht - 15 Sept. 2020
Peer-Review-StatusJa

Externe IDs

PubMed 32868438

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Counting processes, Moment equations, Stochastic population modeling