Stochastic homogenization of Λ-convex gradient flows
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper we present a stochastic homogenization result for a class of Hilbert space evolutionary gradient systems driven by a quadratic dissipation potential and a Λ-convex energy functional featuring random and rapidly oscillating coeficients. Specific examples included in the result are Allen-Cahn type equations and evolutionary equations driven by the p-Laplace operator with p 2 (1;1). The homogenization procedure we apply is based on a stochastic two-scale convergence approach. In particular, we define a stochastic unfolding operator which can be considered as a random counterpart of the well-established notion of periodic unfolding. The stochastic unfolding procedure grants a very convenient method for homogenization problems defined in terms of Λ-convex functionals.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 427-453 |
Seitenumfang | 27 |
Fachzeitschrift | Discrete and continuous dynamical systems-Series s |
Jahrgang | 14 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Jan. 2021 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
Scopus | 85098882990 |
---|---|
unpaywall | 10.3934/dcdss.2020328 |
Schlagworte
Schlagwörter
- 2-SCALE HOMOGENIZATION, GAMMA-CONVERGENCE, HILBERT, RANDOM-WALKS, SPACES, Stochastic homogenization, gradient system, stochastic unfolding, two-scale convergence, Gradient system, Two-scale convergence, Stochastic unfolding