Stability selection enables robust learning of differential equations from limited noisy data
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We present a statistical learning framework for robust identification of differential equations from noisy spatio-temporal data. We address two issues that have so far limited the application of such methods, namely their robustness against noise and the need for manual parameter tuning, by proposing stability-based model selection to determine the level of regularization required for reproducible inference. This avoids manual parameter tuning and improves robustness against noise in the data. Our stability selection approach, termed PDE-STRIDE, can be combined with any sparsity-promoting regression method and provides an interpretable criterion for model component importance. We show that the particular combination of stability selection with the iterative hard-thresholding algorithm from compressed sensing provides a fast and robust framework for equation inference that outperforms previous approaches with respect to accuracy, amount of data required, and robustness. We illustrate the performance of PDE-STRIDE on a range of simulated benchmark problems, and we demonstrate the applicability of PDE-STRIDE on real-world data by considering purely data-driven inference of the protein interaction network for embryonic polarization in Caenorhabditis elegans. Using fluorescence microscopy images of C. elegans zygotes as input data, PDE-STRIDE is able to learn the molecular interactions of the proteins.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 20210916 |
Seitenumfang | 25 |
Fachzeitschrift | Proceedings of the Royal Society of London : Series A, Mathematical, physical and engineering sciences |
Jahrgang | 478 |
Ausgabenummer | 2262 |
Publikationsstatus | Veröffentlicht - Juni 2022 |
Peer-Review-Status | Ja |
Externe IDs
PubMedCentral | PMC9199075 |
---|---|
Scopus | 85132361601 |
unpaywall | 10.1098/rspa.2021.0916 |
WOS | 000814371000003 |
Mendeley | 6b1c9678-f6d9-31e0-bafb-031b63248a1a |
ORCID | /0000-0003-4414-4340/work/142252172 |
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
- Interaktive und intelligente Systeme, Bild- und Sprachverarbeitung, Computergraphik und Visualisierung
- Massiv parallele und datenintensive Systeme
- Bioinformatik und Theoretische Biologie
- Statistische Physik, Weiche Materie, Biologische Physik, Nichtlineare Dynamik
- Entwicklungsbiologie
- Softwaretechnik und Programmiersprachen
- Zellbiologie
- Biophysik
- Mathematik
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- PAR proteins, differential equations, machine learning, sparse regression, stability selection, statistical learning theory