S-preclones and the Galois connection SPol–SInv, Part I

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Peter Jipsen - , Chapman University (Autor:in)
  • Erkko Lehtonen - , Khalifa University of Science and Technology (Autor:in)
  • Reinhard Pöschel - , Institut für Algebra (Autor:in)

Abstract

We consider S-operationsf:An→A in which each argument is assigned a signums∈S representing a “property” such as being order-preserving or order-reversing with respect to a fixed partial order on A. The set S of such properties is assumed to have a monoid structure reflecting the behaviour of these properties under the composition of S-operations (e.g., order-reversing composed with order-reversing is order-preserving). The collection of all S-operations with prescribed properties for their signed arguments is not a clone (since it is not closed under arbitrary identification of arguments), but it is a preclone with special properties, which leads to the notion of S-preclone. We introduce S-relationsϱ=(ϱs)s∈S, S-relational clones, and a preservation property (), and we consider the induced Galois connection SPol–SInv. The S-preclones and S-relational clones turn out to be exactly the closed sets of this Galois connection. We also establish some basic facts about the structure of the lattice of all S-preclones on A.

Details

OriginalspracheEnglisch
Aufsatznummer34
FachzeitschriftAlgebra universalis
Jahrgang85
Ausgabenummer3
PublikationsstatusVeröffentlicht - Aug. 2024
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Galois connection, Order-preserving map, Order-reversing map, Partially ordered algebra, Preclone