Spotiflow: accurate and efficient spot detection for fluorescence microscopy with deep stereographic flow regression

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Albert Dominguez Mantes - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Antonio Herrera - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Irina Khven - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Anjalie Schlaeppi - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Eftychia Kyriacou - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Georgios Tsissios - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Evangelia Skoufa - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Luca Santangeli - , European Molecular Biology Laboratory (EMBL) Heidelberg (Autor:in)
  • Elena Buglakova - , European Molecular Biology Laboratory (EMBL) Heidelberg (Autor:in)
  • Emine Berna Durmus - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Suliana Manley - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Anna Kreshuk - , European Molecular Biology Laboratory (EMBL) Heidelberg (Autor:in)
  • Detlev Arendt - , European Molecular Biology Laboratory (EMBL) Heidelberg, Universität Heidelberg (Autor:in)
  • Can Aztekin - , École Polytechnique Fédérale de Lausanne, Friedrich Miescher Laboratory of the Max Planck Society (Autor:in)
  • Joachim Lingner - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Gioele La Manno - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Martin Weigert - , Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI Dresden), Professur für Maschinelles Lernen für das Räumliche Verständnis (ScaDS.AI Dresden/Leipzig), École Polytechnique Fédérale de Lausanne (Autor:in)

Abstract

Identification of spot-like structures in large, noisy microscopy images is a crucial step for many life-science applications. Imaging-based spatial transcriptomics (iST), in particular, relies on the precise detection of millions of transcripts in low signal-to-noise images. Despite recent advances in computer vision, most of the currently used spot detection techniques are still based on classical signal processing and require tedious manual tuning per dataset. Here we introduce Spotiflow, a deep learning method for subpixel-accurate spot detection that formulates spot detection as a multiscale heatmap and stereographic flow regression problem. Spotiflow supports 2D and 3D images, generalizes across different imaging conditions and is more time and memory efficient than existing methods. We show the efficacy of Spotiflow by extensive quantitative experiments on diverse datasets and demonstrate that its increased accuracy leads to meaningful improvements in biological insights obtained from iST and live imaging experiments. Spotiflow is available as an easy-to-use Python library as well as a napari plugin at https://github.com/weigertlab/spotiflow.

Details

OriginalspracheEnglisch
Seiten (von - bis)1495-1504
Seitenumfang10
FachzeitschriftNature methods
Jahrgang22
Ausgabenummer7
PublikationsstatusVeröffentlicht - Juli 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-7780-9057/work/186184829

Schlagworte