Split CFD-simulation approach for effective quantification of mixed convective heat transfer coefficients on complex machine tool models

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Tharun Suresh Kumar - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Alexander Geist - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Christian Naumann - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Janine Glänzel - , Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)
  • Steffen Ihlenfeldt - , Professur für Werkzeugmaschinenentwicklung und adaptive Steuerungen, Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (Autor:in)

Abstract

Estimation of mixed heat transfer coefficients on complex CFD-simulation models of 5-axis machine tools/ machining centers poses a whole new set of challenges. The enclosure around the machine which protects the user from chips and machining-process is also responsible for creation of an additional environment which has coolant supply, chips and moving air due to temperature changes and oil-emulsion exhaust. This results in a highly complex CFD model which has inner and outer environments along with multiphase fluid domains. The computational effort required is extremely large. The split-simulation approach divides the simulation model into internal and external environments. The natural convection is emphasized for external environment model and forced convection for internal multiphase environment model. This division significantly reduces the computational efforts involved by neglecting uninfluential solid bodies, cavities etc. and thereby the model size. The external and internal influences are mapped separately onto natural and forced convection coefficients using neural networks, which can be used to predict the combined heat transfer coefficients for any load cases within the training boundaries. The temperature fields obtained from split-simulation model are validated with thermography and temperature sensor readings taken from the machine in the form of a use-case study.

Details

OriginalspracheEnglisch
Seiten (von - bis)199-204
Seitenumfang6
FachzeitschriftProcedia CIRP
Jahrgang118
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Konferenz

Titel16th CIRP Conference on Intelligent Computation in Manufacturing Engineering
KurztitelCIRP ICME 2022
Veranstaltungsnummer16
Dauer13 - 15 Juli 2022
OrtOnline
StadtNaples
LandItalien

Schlagworte

Schlagwörter

  • CFD simulation, Decoupling, Genetic Algorithms, heat transfer coeffcients