Spindle Scaling Is Governed by Cell Boundary Regulation of Microtubule Nucleation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Elisa Maria Rieckhoff - , Exzellenzcluster PoL: Physik des Lebens, Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Frederic Berndt - , Exzellenzcluster PoL: Physik des Lebens, Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Maria Elsner - , Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD), Technische Universität Dresden (Autor:in)
  • Stefan Golfier - , Exzellenzcluster PoL: Physik des Lebens, Professur für Biomimetische Materialien, Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Franziska Decker - , Exzellenzcluster PoL: Physik des Lebens, Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)
  • Keisuke Ishihara - , Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD), Technische Universität Dresden (Autor:in)
  • Jan Brugués - , Exzellenzcluster PoL: Physik des Lebens, Max Planck Institute of Molecular Cell Biology and Genetics, Max-Planck-Institut für Physik komplexer Systeme, Zentrum für Systembiologie Dresden (CSBD) (Autor:in)

Abstract

Cellular organelles such as the mitotic spindle adjust their size to the dimensions of the cell. It is widely understood that spindle scaling is governed by regulation of microtubule polymerization. Here, we use quantitative microscopy in living zebrafish embryos and Xenopus egg extracts in combination with theory to show that microtubule polymerization dynamics are insufficient to scale spindles and only contribute below a critical cell size. In contrast, microtubule nucleation governs spindle scaling for all cell sizes. We show that this hierarchical regulation arises from the partitioning of a nucleation inhibitor to the cell membrane. Our results reveal that cells differentially regulate microtubule number and length using distinct geometric cues to maintain a functional spindle architecture over a large range of cell sizes.

Details

OriginalspracheEnglisch
Seiten (von - bis)4973-4983.e10
FachzeitschriftCurrent biology
Jahrgang30
Ausgabenummer24
PublikationsstatusVeröffentlicht - 21 Dez. 2020
Peer-Review-StatusJa

Externe IDs

PubMed 33217321

Schlagworte

Schlagwörter

  • hierarchical regulation, microtubule dynamics, microtubule nucleation, mitotic spindle, scaling, spindle size, surface-to-volume ratio, Xenopus, zebrafish