Spectromicroscopy of Nanoscale Materials in the Tender X-Ray Regime Enabled by a High Efficient Multilayer-Based Grating Monochromator

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Stephan Werner - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) (Autor:in)
  • Peter Guttmann - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) (Autor:in)
  • Frank Siewert - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) (Autor:in)
  • Andrey Sokolov - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) (Autor:in)
  • Matthias Mast - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) (Autor:in)
  • Qiushi Huang - , Tongji University (Autor:in)
  • Yufei Feng - , Tongji University (Autor:in)
  • Tongzhou Li - , Tongji University (Autor:in)
  • Friedmar Senf - , Universität Potsdam (Autor:in)
  • Rolf Follath - , Paul Scherrer Institute (Autor:in)
  • Zhohngquan Liao - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Kristina Kutukova - , Fraunhofer-Institut für Keramische Technologien und Systeme (Autor:in)
  • Jian Zhang - , Northwestern Polytechnical University Xian (Autor:in)
  • Xinliang Feng - , Professur für Molekulare Funktionsmaterialien (cfaed) (Autor:in)
  • Zhan Shan Wang - , Tongji University (Autor:in)
  • Ehrenfried Zschech - , Fraunhofer-Institut für Keramische Technologien und Systeme, deepXscan GmbH (Autor:in)
  • Gerd Schneider - , Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Humboldt-Universität zu Berlin (Autor:in)

Abstract

The combination of near edge X-ray absorption spectroscopy with nanoscale X-ray imaging is a powerful analytical tool for many applications in energy technologies, catalysis, which are critical to combat climate change, as well as microelectronics and life science. Materials from these scientific areas often contain key elements, such as Si, P, S, Y, Zr, Nb, and Mo as well as lanthanides, whose X-ray absorption edges lie in the so-called tender photon energy range 1.5–5.0 keV. Neither conventional grazing incidence grating nor crystal monochromators have high transmission in this energy range, thereby yielding the tender photon energy gap. To close this gap, a monochromator setup based on a multilayer coated blazed plane grating and plane mirror is devised. The measurements show that this novel concept improves the photon flux in the tender X-ray regime by two-orders-of-magnitude enabling previously unattainable laboratory and synchrotron-based studies. This setup is applied to perform nanoscale spectromicroscopy studies. The high photon flux provides sufficient sensitivity to obtain the electronic structure of Mo in platinum-free MoNi4 nanoparticles for electrochemical energy conversion. Additionally, it is shown that the chemical bonding of nano-structures in integrated circuits can be distinguished by the electronic configuration at the Si-K edge.

Details

OriginalspracheEnglisch
Aufsatznummer2201382
Seitenumfang9
FachzeitschriftSmall methods
Jahrgang7
Ausgabenummer1
PublikationsstatusVeröffentlicht - 20 Jan. 2023
Peer-Review-StatusJa

Externe IDs

PubMed 36446642
WOS 000891971900001

Schlagworte

Forschungsprofillinien der TU Dresden

Ziele für nachhaltige Entwicklung

Schlagwörter

  • blazed multilayer grating, catalysts, dielectrics, electrochemical energy conversion, microelectronics, tender X-ray energy range, X-ray spectromicroscopy, Blazed multilayer grating, Catalysts, Electrochemical energy conversion, Dielectrics, Microelectronics