Spectral linear matrix inequalities

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We prove, under a certain representation theoretic assumption, that the set of real symmetric matrices, whose eigenvalues satisfy a linear matrix inequality, is itself a spectrahedron. The main application is that derivative relaxations of the positive semidefinite cone are spectrahedra. From this we further deduce statements on their Wronskians. These imply that Newton's inequalities, as well as a strengthening of the correlation inequalities for hyperbolic polynomials, can be expressed as sums of squares.

Details

OriginalspracheEnglisch
Aufsatznummer107749
Seiten (von - bis)Paper No. 107749, 36
FachzeitschriftAdvances in Mathematics
Jahrgang384
PublikationsstatusVeröffentlicht - 25 Juni 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85104284909

Schlagworte