Spectral linear matrix inequalities
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We prove, under a certain representation theoretic assumption, that the set of real symmetric matrices, whose eigenvalues satisfy a linear matrix inequality, is itself a spectrahedron. The main application is that derivative relaxations of the positive semidefinite cone are spectrahedra. From this we further deduce statements on their Wronskians. These imply that Newton's inequalities, as well as a strengthening of the correlation inequalities for hyperbolic polynomials, can be expressed as sums of squares.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 107749 |
Seiten (von - bis) | Paper No. 107749, 36 |
Fachzeitschrift | Advances in Mathematics |
Jahrgang | 384 |
Publikationsstatus | Veröffentlicht - 25 Juni 2021 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85104284909 |
---|