Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Nikolaus Wenger - , École Polytechnique Fédérale de Lausanne, Charité – Universitätsmedizin Berlin (Autor:in)
  • Eduardo Martin Moraud - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Jerome Gandar - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Pavel Musienko - , École Polytechnique Fédérale de Lausanne, RAS - Pavlov Institute of Physiology, St. Petersburg State University, Institute of Physiopulmonology (Autor:in)
  • Marco Capogrosso - , École Polytechnique Fédérale de Lausanne, Sant'Anna School of Advanced Studies (Autor:in)
  • Laetitia Baud - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Camille G. Le Goff - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Quentin Barraud - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Natalia Pavlova - , École Polytechnique Fédérale de Lausanne, RAS - Pavlov Institute of Physiology (Autor:in)
  • Nadia Dominici - , École Polytechnique Fédérale de Lausanne, Vrije Universiteit Amsterdam (VU) (Autor:in)
  • Ivan R. Minev - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Leonie Asboth - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Arthur Hirsch - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Simone Duis - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Julie Kreider - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Andrea Mortera - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Oliver Haverbeck - , Micromotive GmbH (Autor:in)
  • Silvio Kraus - , Micromotive GmbH (Autor:in)
  • Felix Schmitz - , Fraunhofer-Institut für Mikrotechnik und Mikrosysteme (Autor:in)
  • Jack DiGiovanna - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Rubia Van Den Brand - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Jocelyne Bloch - , Université de Lausanne (Autor:in)
  • Peter Detemple - , Fraunhofer-Institut für Mikrotechnik und Mikrosysteme (Autor:in)
  • Stéphanie P. Lacour - , École Polytechnique Fédérale de Lausanne (Autor:in)
  • Erwan Bézard - , Motac Neuroscience, Université de Bordeaux (Autor:in)
  • Silvestro Micera - , École Polytechnique Fédérale de Lausanne, Sant'Anna School of Advanced Studies (Autor:in)
  • Grégoire Courtine - , École Polytechnique Fédérale de Lausanne, Université de Lausanne (Autor:in)

Abstract

Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.

Details

OriginalspracheEnglisch
Seiten (von - bis)138-145
Seitenumfang8
FachzeitschriftNature medicine
Jahrgang22
Ausgabenummer2
PublikationsstatusVeröffentlicht - 1 Feb. 2016
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 26779815

Schlagworte