Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We use the scale of Besov spaces B α τ,τ(O), 1/τ = α/d + 1/p, α>0,p fixed, to study the spatial regularity of solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains O⊂ℝ. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 197-234 |
| Seitenumfang | 38 |
| Fachzeitschrift | Studia Mathematica |
| Jahrgang | 207 |
| Ausgabenummer | 3 |
| Publikationsstatus | Veröffentlicht - 2011 |
| Peer-Review-Status | Ja |