Solution-processed, high-performance n-channel organic microwire transistors

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Joon Hak Oh - , Stanford University (Autor:in)
  • Hang Woo Lee - , Stanford University (Autor:in)
  • Stefan Mannsfeld - , Stanford University, SLAC National Accelerator Laboratory (Autor:in)
  • Randall M. Stoltenberg - , Stanford University (Autor:in)
  • Eric Jung - , Stanford University (Autor:in)
  • Yong Wan Jin - , Samsung (Autor:in)
  • Jong Min Kim - , Samsung (Autor:in)
  • Ji Beom Yoo - , Sungkyunkwan University (SKKU) (Autor:in)
  • Zhenan Bao - , Stanford University (Autor:in)

Abstract

The development of solution-processable, high-performance n-channel organic semiconductors is crucial to realizing low-cost, all-organic complementary circuits. Single-crystalline organic semiconductor nano/microwires (NWs/MWs) have great potential as active materials in solution-formed high-performance transistors. However, the technology to integrate these elements into functional networks with controlled alignment and density lags far behind their inorganic counterparts. Here, we report a solution-processing approach to achieve high-performance air-stable n-channel organic transistors (the field-effect mobility (μ) up to 0.24 cm 2/Vs for MW networks) comprising high mobility, solution-synthesized single-crystalline organic semiconducting MWs (μ as high as 1.4 cm 2/Vs for individual MWs) and a filtration-and-transfer (FAT) alignment method. The FAT method enables facile control over both alignment and density of MWs. Our approach presents a route toward solution-processed, high-performance organic transistors and could be used for directed assembly of various functional organic and inorganic NWs/MWs.

Details

OriginalspracheEnglisch
Seiten (von - bis)6065-6070
Seitenumfang6
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America : PNAS
Jahrgang106
Ausgabenummer15
PublikationsstatusVeröffentlicht - 14 Apr. 2009
Peer-Review-StatusJa
Extern publiziertJa

Schlagworte

Forschungsprofillinien der TU Dresden

ASJC Scopus Sachgebiete

Schlagwörter

  • Alignment, Organic semiconductors, Single crystals, Solution processing