Solar neutrinos from the CNO fusion cycle: Borexino discovery and implications for the solar physics

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Borexino Collaboration - (Autor:in)
  • Professur für Kernphysik
  • Forschungszentrum Jülich
  • Rheinisch-Westfälische Technische Hochschule Aachen
  • Technische Universität München
  • National Institute for Nuclear Physics
  • Princeton University
  • Virginia Polytechnic Institute and State University
  • Lomonosov Moscow State University
  • RAS - Saint Petersburg Nuclear Physics Institute
  • Institut de Mecanique Celeste et de Calcul des Ephemerides
  • Gran Sasso Science Institute
  • Joint Institute for Nuclear Research
  • Johannes Gutenberg-Universität Mainz
  • Jagiellonian University in Kraków
  • NASU - Institute of Nuclear Research
  • Royal Holloway University of London
  • Institute for Nuclear Research
  • Russian Research Centre Kurchatov Institute
  • Moscow Engineering Physics Institute

Abstract

Our Sun is powered by the fusion of hydrogen into helium that proceeds in the solar core via two distinct mechanisms: dominant proton-proton (pp) chain and sub-dominant Carbon-Nitrogen-Oxygen (CNO) cycle. Solar neutrinos are emitted in electron-flavour eigenstate along several distinct reactions of both cycles, each characterized by a specific energy spectrum and flux. These so-called solar neutrinos are the only direct probe of the energy production mechanism in the Sun and stars in general. Borexino, a 280-ton liquid scintillator detector that was taking data from May 2007 to October 2021 at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, is the only experiment to perform a comprehensive spectroscopy of pp chain solar neutrinos and to prove the existence of CNO cycle. This was made possible thanks to an unprecedented radio-purity and thermal stability of the detector. This contribution is focused on the Borexino measurement of CNO solar neutrinos, that allowed us to exclude the absence of CNO signal with high statistical significance. In addition, we used the CNO flux measurement together with the 8B flux stemming from the global analysis of all solar neutrino data to evaluate the abundance of C and N with respect to H in the Sun with solar neutrinos for the first time. Our result agrees with the high metallicity spectroscopic photospheric measurements and shows a ∼2σ tension with the low metallicity ones.

Details

OriginalspracheEnglisch
Aufsatznummer970
FachzeitschriftProceedings of Science
Jahrgang444
PublikationsstatusVeröffentlicht - 27 Sept. 2024
Peer-Review-StatusJa

Konferenz

Titel38th International Cosmic Ray Conference
KurztitelICRC 2023
Veranstaltungsnummer38
Dauer26 Juli - 3 August 2023
Webseite
OrtNagoya University
StadtNagoya
LandJapan

Schlagworte

ASJC Scopus Sachgebiete