Software Performance of the ATLAS Track Reconstruction for LHC Run 3
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
- Professur für Experimentelle Teilchenphysik
- Professur für Teilchenphysik
- Institut für Kern- und Teilchenphysik (IKTP)
- Aix-Marseille Université
- University of Oklahoma
- Georg-August-Universität Göttingen
- Technische Universität (TU) Dortmund
- Brookhaven National Laboratory
- Mohammed V University in Rabat
- Tel Aviv University
- Technion-Israel Institute of Technology
- New York University
- National Institute for Nuclear Physics
- Abdus Salam International Centre for Theoretical Physics
- Stanford University
- Laboratoire d'Annecy-le-Vieux de Physique des Particules LAPP
- AGH University of Science and Technology
- University of Toronto
- Brandeis University
- University of Manchester
- Northern Illinois University
- Istanbul University
- Rutherford Appleton Laboratory
- University of California at Santa Cruz
- Institut de Física d’Altes Energies (IFAE)
- Università degli Studi di Pavia
- Johannes Gutenberg-Universität Mainz
- Alexandru Ioan Cuza University of Iaşi
- Ilia State University
- McGill University
- Royal Holloway University of London
- University of Science and Technology of China (USTC)
- University of Rome Tor Vergata
- University of Valencia
- University of Hassan II Casablanca
- Weizmann Institute of Science
- Technische Universität Dresden
- Lawrence Livermore National Laboratory
Abstract
Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pile-up) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 9 |
Fachzeitschrift | Computing and Software for Big Science |
Jahrgang | 8 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Dez. 2024 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0001-6480-6079/work/173049551 |
---|---|
ORCID | /0000-0003-0546-1634/work/173516667 |