Social Neural Network Soups with Surprise Minimization

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

A recent branch of research in artificial life has constructed artificial chemistry systems whose particles are dynamic neural networks. These particles can be applied to each other and show a tendency towards self-replication of their weight values. We define new interactions for said particles that allow them to recognize one another and learn predictors for each other’s behavior. For instance, each particle minimizes its surprise when observing another particle’s behavior. Given a special catalyst particle to exert evolutionary selection pressure on the soup of particles, these ‘social’ interactions are sufficient to produce emergent behavior similar to the stability pattern previously only achieved via explicit self-replication training.

Details

OriginalspracheEnglisch
TitelALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference (ALIFE)
Seitenumfang9
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheALIFE : proceedings of the artificial life conference.

Konferenz

Titel2023 Conference on Artificial Life
UntertitelGhost in the machine
KurztitelALIFE 2023
Dauer24 - 28 Juli 2023
Webseite
OrtClark Memorial Student Center
StadtSapporo
LandJapan

Schlagworte

ASJC Scopus Sachgebiete