Smooth digraphs modulo primitive positive constructability and cyclic loop conditions
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Finite smooth digraphs, that is, finite directed graphs without sources and sinks, can be partially ordered via pp-constructability. We give a complete description of this poset and, in particular, we prove that it is a distributive lattice. Moreover, we show that in order to separate two smooth digraphs in our poset it suffices to show that the polymorphism clone of one of the digraphs satisfies a prime cyclic loop condition that is not satisfied by the polymorphism clone of the other. Furthermore, we prove that the poset of cyclic loop conditions ordered by their strength for clones is a distributive lattice, too.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 929-967 |
Seitenumfang | 39 |
Fachzeitschrift | International journal of algebra and computation |
Jahrgang | 31 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - Aug. 2021 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0001-8228-3611/work/142241060 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- directed cycles, Height 1 identities, loop conditions, minor-preserving maps, primitive positive constructions, smooth digraphs