Smooth digraphs modulo primitive positive constructability and cyclic loop conditions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

Finite smooth digraphs, that is, finite directed graphs without sources and sinks, can be partially ordered via pp-constructability. We give a complete description of this poset and, in particular, we prove that it is a distributive lattice. Moreover, we show that in order to separate two smooth digraphs in our poset it suffices to show that the polymorphism clone of one of the digraphs satisfies a prime cyclic loop condition that is not satisfied by the polymorphism clone of the other. Furthermore, we prove that the poset of cyclic loop conditions ordered by their strength for clones is a distributive lattice, too.

Details

OriginalspracheEnglisch
Seiten (von - bis)929-967
Seitenumfang39
FachzeitschriftInternational journal of algebra and computation
Jahrgang31
Ausgabenummer5
PublikationsstatusVeröffentlicht - Aug. 2021
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8228-3611/work/142241060

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • directed cycles, Height 1 identities, loop conditions, minor-preserving maps, primitive positive constructions, smooth digraphs

Bibliotheksschlagworte