Skin Segmentation for Imaging Photoplethysmography Using a Specialized Deep Learning Approach

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Imaging photoplethysmography (iPPG) is a camera-based approach for the remote measurement of superficial tissue perfusion most commonly applied to facial video recordings. Since only tissue contains information about perfusion, skin detection is a necessary processing step. Several approaches for the detection of skin pixels in video recordings have been developed, e.g. using color thresholds. Within this work we present a deep learning based approach capable of combining color and morphology information, which makes the skin detection robust against different illumination conditions. We evaluated our new approach using two datasets with 182 individuals of different gender, age, skin tone and illumination conditions. Our approach outperformed state-of-the-art algorithms or yielded at least comparable results (mean absolute error of estimated pulse rate improved by up to 68 %). The method presented allows more accurate assessment of superficial tissue perfusion with iPPG.

Details

OriginalspracheEnglisch
Titel48th Conference Computing in Cardiology (CinC)
Herausgeber (Verlag)Wiley-IEEE Press
Seiten1-4
Seitenumfang4
Band48
ISBN (elektronisch)9781665479165
ISBN (Print)978-1-6654-6721-6
PublikationsstatusVeröffentlicht - 15 Sept. 2021
Peer-Review-StatusJa

Konferenz

Titel48th Computing in Cardiology Conference
KurztitelCinC 2021
Veranstaltungsnummer48
Dauer12 - 15 September 2021
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtHotel Passage & online
StadtBrno
LandTschechische Republik

Externe IDs

Scopus 85124729976
ORCID /0000-0001-6754-5257/work/142232820
ORCID /0000-0003-4012-0608/work/142235698

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Deep learning, Image color analysis, Statistical analysis, Neural networks, Lighting, Imaging, Photoplethysmography