Single- and Multiscale Laser Patterning of 3D Printed Biomedical Titanium Alloy: Toward an Enhanced Adhesion and Early Differentiation of Human Bone Marrow Stromal Cells

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Avinash Hariharan - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Phil Goldberg - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Frederic Schell - , Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Ute Hempel - , Institut für Physiologische Chemie (Autor:in)
  • Friedrich Striggow - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Martin Hantusch - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Mariana Medina-Sanchez - , Mikro- und Nano-Biosysteme (FoG), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • Andres F. Lasagni - , Professur für Laserbasierte Fertigung, Fraunhofer-Institut für Werkstoff- und Strahltechnik (Autor:in)
  • Annett Gebert - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)

Abstract

This study explores the enhancement of biocompatible titanium-based implants through surface functionalization for improved bone healing. Specifically, a near-beta type Ti-13Nb-13Zr alloy is 3D printed using laser powder bed fusion and subsequently textured using nanosecond (ns) and picosecond (ps) direct laser interference patterning (DLIP) to create single-scale and multi-scale surface textures. On these textures, the cell behavior, morphology, metabolic activity and osteogenic differentiation potential of human bone marrow stromal cells are assessed using fluorescence microscopy and MTS assays. Moreover, tissue non-specific alkaline phosphatase activity served as an early osteoblast production marker. Compared to untextured specimens, both types of textures exhibited higher metabolic activity and cell proliferation. Single-scale ns-DLIP textures encouraged cell extensions anchored in groove regions, while ps-DLIP textures with hierarchical structures promoted cell extensions attaching to nanostructures on sidewalls. The groove width and nanotopographies in groove areas facilitated cell spreading. Surface topography, roughness, and surface chemistry (surface energy, wettability) influenced cell adhesion, proliferation, and differentiation. A comprehensive evaluation of DLIP-generated surface textures, including their topography and chemical states, complements the factors affecting in vitro cell behavior. Overall, this research demonstrates the potential of surface-functionalized 3Dprinted titanium for a novel generation of biocompatible implants.

Details

OriginalspracheEnglisch
Aufsatznummer2310607
Seitenumfang16
FachzeitschriftAdvanced functional materials
Jahrgang34
Ausgabenummer8
Frühes Online-Datum7 Nov. 2023
PublikationsstatusVeröffentlicht - Feb. 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85175963002
WOS 001096427200001

Schlagworte

Schlagwörter

  • titanium implants, biocompatibility, direct laser interference patterning, laser additive manufacturing, 3D printing