Simulating Nonlinear Waves and Partial Differential Equations via CNN—Part I: Basic Techniques

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Tamas Roska - , University of California at Berkeley (Autor:in)
  • Tibor Kozek - , University of California at Berkeley (Autor:in)
  • Leon O. Chua - , University of California at Berkeley (Autor:in)
  • Ronald Tetzlaff - , Universitätsklinikum Frankfurt (Autor:in)
  • Frank Puffer - , Universitätsklinikum Frankfurt (Autor:in)
  • Dietrich Wolf - , Universitätsklinikum Frankfurt (Autor:in)

Abstract

Cellular neural networks (CNNs)—a paradigm for locally connected analog array-computing structures—are considered for solving partial differential equations (PDE’s) and systems of ordinary differential equations (ODE’s). The relationship between various implementations of nonanalytical PDE solvers is discussed. The applicability of CNNs is shown by three examples of nonlinear PDE implementations: a reaction-diffusion type system, Burgers’ equation, and a form of the Navier-Stokes equation in a two-dimensional setting.

Details

OriginalspracheEnglisch
Seiten (von - bis)807-815
Seitenumfang9
FachzeitschriftIEEE Transactions on Circuits and Systems : 1, Fundamental Theory and Applications
Jahrgang42
Ausgabenummer10
PublikationsstatusVeröffentlicht - Okt. 1995
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0001-7436-0103/work/142240246

Schlagworte

ASJC Scopus Sachgebiete