Signatures of a magnetic-field-induced Lifshitz transition in the ultra-quantum limit of the topological semimetal ZrTe5

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • S. Galeski - , Max Planck Institute for Chemical Physics of Solids, Universität Bonn (Autor:in)
  • H. F. Legg - , Universität Basel (Autor:in)
  • R. Wawrzyńczak - , Max Planck Institute for Chemical Physics of Solids (Autor:in)
  • T. Förster - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • S. Zherlitsyn - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • D. Gorbunov - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • M. Uhlarz - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • P. M. Lozano - , Brookhaven National Laboratory (Autor:in)
  • Q. Li - , Brookhaven National Laboratory (Autor:in)
  • G. D. Gu - , Brookhaven National Laboratory (Autor:in)
  • C. Felser - , Max Planck Institute for Chemical Physics of Solids (Autor:in)
  • J. Wosnitza - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Professur für Physik in hohen Magnetfeldern (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • T. Meng - , Professur für Theoretische Festkörperphysik, Technische Universität Dresden (Autor:in)
  • J. Gooth - , Max Planck Institute for Chemical Physics of Solids, Universität Bonn (Autor:in)

Abstract

The quantum limit (QL) of an electron liquid, realised at strong magnetic fields, has long been proposed to host a wealth of strongly correlated states of matter. Electronic states in the QL are, for example, quasi-one dimensional (1D), which implies perfectly nested Fermi surfaces prone to instabilities. Whereas the QL typically requires unreachably strong magnetic fields, the topological semimetal ZrTe5 has been shown to reach the QL at fields of only a few Tesla. Here, we characterize the QL of ZrTe5 at fields up to 64 T by a combination of electrical-transport and ultrasound measurements. We find that the Zeeman effect in ZrTe5 enables an efficient tuning of the 1D Landau band structure with magnetic field. This results in a Lifshitz transition to a 1D Weyl regime in which perfect charge neutrality can be achieved. Since no instability-driven phase transitions destabilise the 1D electron liquid for the investigated field strengths and temperatures, our analysis establishes ZrTe5 as a thoroughly understood platform for potentially inducing more exotic interaction-driven phases at lower temperatures.

Details

OriginalspracheEnglisch
Aufsatznummer7418
Seitenumfang7
FachzeitschriftNature communications
Jahrgang13
PublikationsstatusVeröffentlicht - 1 Dez. 2022
Peer-Review-StatusJa

Externe IDs

PubMed 36456570